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Abstract. We apply the theory of classical canonical ensembles to a one-dimensional system 
of ‘soft rods’ and obtain an exact expression for the partition function. In our model, each 
particle is composed of two mass points attracting or repelling one another according to a 
potential linearly dependent on their separation. Mass points, whether they constitute a 
given particle or are members of different particles, are presumed to be unable to pass one 
another. This is a very simple model, therefore, of a system whose internal and external 
degrees of freedom interact. In order to eliminate end effects without appealing to the 
thermodynamic limit, we employ a coordinate system with periodic boundary conditions. 
Our methodology of evaluation is more general than the solution for our particular model 
which, for a finite system, involves in the partition function a modified Bessel function of 
half-integral order. 

In the limit of vanishing intraparticle potential, we recover the correct partition 
function for mass points. We derive explicit formulae for one-dimensional pressure, 
chemical potential, and entropy for finite systems. We also obtain the partition function in 
the thermodynamic limit, and explicit formulae for three thermodynamic functions, which 
we show to be approached by those for finite systems. This involves establishing an 
apparently new asymptotic expression for the ratio of two Bessel functions of large but 
slightly different orders. 

1. Introduction 

The central problem in rigorous classical statistical mechanics of systems of ‘particles’ is 
the evaluation of partition functions and configuration integrals. Formally, these are 
merely multiple integrals, but in practice, only rarely is their evaluation possible. As a 
review by Barker and Henderson (1976) shows, a number of approximate methods 
have been developed to predict quantities of interest in statistical thermodynamics 
without obtaining the relevant partition functions. Although approximate methods 
provide fairly accurate numerical data for the prediction of physical properties, the a 
priori selection of the best approximation for a given system under a given set of 
conditions is difficult (Andrews 1975). From the theoretician’s viewpoint, obtaining an 
exact expression for the partition function is essential to the analysis of approximate 
theories, and to the development of a comprehensive understanding of the behaviour of 
molecules. The mathematical complexity of the evaluation of the integral forms of the 
partition functions for systems of interacting particles has restricted research in exact 
classical statistical mechanics to a very few cases, perhaps the best known of which is the 
Tonks gas (Tonks 1936). Another notable example, exact in the thermodynamic limit, 
is the system studied by Kac et a1 (1963), in which the potential is a hard core plus an 

0305-4470/80/030969 + 09$01.00 @ 1980 The Institute of Physics 969 



970 J C Pokier and J K Swadesh 

exponential attraction. The entire field of one-dimensional statistical mechanics has 
been reviewed by Lieb and Mattis (1966). 

We examine a one-dimensional model of a system of particles similar to that of 
Tonks, but incorporating an interaction between the internal and external degrees of 
freedom of the particles, obtaining an exact expression for the partition function. In 
order to simplify the mathematics involved in the expression for the partition function, 
we array N + l  particles on a circle of radius R and circumference 2 r R  =L. The 
N + l th  particle acts as a marker for the imposition of periodic boundary conditions. By 
altering the properties of this particle, we intend to show in a work in preparation (J C 
Poirier and J K Swadesh 1979 unpublished) that we may examine end effects without 
difficulty. For the present, we assume that all particles are composed of two identical 
mass points, or ‘subparticles’. The separation of the two subparticles comprising 
particle i is given by 2R4,. The centre of mass of the ith particle, from which each of its 
subparticles is separated by a distance of magnitude Rd!, is separated from the centre of 
mass of the N + l t h  particle by a distance of magnitude Re,. In turn, the centre of mass 
of the N + l t h  particle is at a distance ReNtl from an arbitrary zero. No subparticle may 
pass another, but otherwise there is no interaction between the subparticles of different 
particles. In mathematical terms, we may write the energy of the ith particle as 

E, = 2cR4, + Vl, +?:/2M’+ 2pTIM’ (1.1) 

where c is any real constant, V:, is a potential function which becomes infinite should 
the subparticles j and j ’  (at least one of which is part of particle i) attempt to pass one 
another and is otherwise zero, P, is the momentum of the centre of mass relative to that 
of the N + l t h  particle, M’ is the mass of the particle, p ,  is the momentum of either 
subparticle with respect to the centie of mass of the particle, and m = M’/2  is the mass 
of a subparticle. The additional factor of two in the numerator of the right-most term 
arises during the derivation according to the Lagrangian formulation, and reflects the 
constraint of symmetrical motion implied by the choice of a centre-of-mass coordinate 
system. For the N + l t h  particle, is the momentum of the centre of mass of that 
particle with respect to an arbitrary zero. In our exposition, we will not write V:, 
explicitly, but the limits of integration will depend on this potential, excluding pro- 
hibited configurations from phase space. 

Our method of solution is to integrate first over the set {RB}, obtaining an expression 
comparable to that of Tonks’ (1936) hard rod case. We then transform {2R4} to a new 
set of coordinates {y}, in terms of which the intermediate result may be evaluated. 
Finally, we merge the resultant expression with that obtained by integrating over all 
momenta and multiply by h - ( 2 N f 2 )  to obtain the complete expression for the partition 
function. 

2. The configuration integral: externai degrees of freedom 

The system configuration integral, 2, resulting from the particle energies summarised 
by (1.1) is 

Z = . . . . . . I exp ( -2PcR4)  dRBi d(2R4;) 
i-;l 

{ R e )  

where P is the inverse of the product of Boltzmann’s constant with the absolute 
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temperature. The lower limit on the integration over Rek is RON+1 + 2  E,!:: Rc#+ + 
Rcjk+Rc$N+l and the upper limit is Rek+l-R4k+l-Rqhk; for the integration over 
R O N + 1 ,  the limits are zero and L. The lower limit for the integration over 2Rqhk is zero 
and the upper limit is L - 2 XzL:l Rq$ for 1 6 k 6 N ;  when k = N + 1, the lower limit is 
zero and the upper is I,. Overlaps of the kth particle with particles of lower index are 
prevented by the conditions imposed by the ranges of integration of those particles. If 
the integrations are performed in the order indicated, we systematically exclude first 
those configurations in which two particles have centres of mass closer than the sum of 
their radii of extension, and then those configurations in which the extension of a 
particle exceeds the free length of the line, i.e. the length of line not occupied by other 
particles. Taken in conjunction, the limits of integration fulfil the requirements of the 
function Vil. 

The integration over the {Re} simplifies (2.1) to 

N t l  N W + l  z = I . . (L/N!)( L - 2 R4i) i = l  17 e x p ( - 2 p ~ R 4 ~ )  d(2R&).  
i = l  

For a system of N hard rods on a line, Tonks (1936) obtained ( L - N u ) ~ ~ N !  for the 
configuration integral, where U is the length of the hard rod. This compares with our 
result of L(L - 2 C;”=:’ R4, )N /N!  after the integration over the {Re}. Our extra factor 
of I ,  comes from the integration over RON+1 from zero to L, and would arise in Tonks’ 
formulation if N + 1 hard rods were arrayed on a circle. Because 2 R 4 ,  represents the 
arc length or extension of the ith ‘soft rod’, our result becomes identical with that of 
Tonks in the case that 2 & p 1  = 2 R 4 2  = . . . = ~ R # J ~ + ~  = U, a constant. 

Our next step is to transform the { 2 R 4 }  to the more convenient set of coordinates, 
{ y } ,  whose members are defined by Y k  = L - 2 Civ_+kl R4, ; 1 s k s N + 1 .  This procedure 
gives us N + 1 linearly independent coordinates, which we may insert into (2.2) as both 
variables and limits of integration; to complete the transformation, we multiply (2.2) by 
the appropriate value of one, namely exp[@(cL - CL)]; the Jacobian of transformation is 
unity. The new limits for the integration over Y k  are 0 and Y k ,  for 1 s k zs N, and 0 and 
L for k = N + 1. The transformed expression for the configuration integral becomes 

where b =pc. The procedure for transforming a set of coordinates is presented in 
Taylor (1955). 

3. The configuration integral: internal degrees of freedom 

There are N +  1 integrations to be performed in (2.3),  and the exponent of y1 is N. It is 
possible, however, to obtain a generalised solution for any number of integrations, and 
for any non-negative integral value of the exponent of y l .  Because, as we have 
previously noted, a general solution will allow us to examine end effects, we simplify the 
general integral, of which a special case appears in (2.3). 

Define y l , .  . . , y J , .  . , , y o  as D independent, real, continuous variables, M as a 
non-negative integer, and L and b as real constants. The generalised integral to be 
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evaluated is 

Application of the technique of Laplace transforms (Abramowitz and Stegun 1964, 
29.2.7, p 1020; 29.3.11, p 1022) to (3.1) gives 

3 I ( D ,  M, L, b )  =M!/sD(s  - b ) M f '  

where 3 is the transform operator, and s is the variable associated with the image 
function. The convolution theorem (Abramowitz and Stegun 1964, 29.2.8, p 1020; 
29.3.3, 29.3.11, p 1022) allows us to perform the inverse transformation, giving 

If D - 1  = M = N ,  as in (2.3), (3.2) simplifies to I ( N + l , N , L ,  b ) =  
J," [YD(L - exp(byD) dyD/N! if LxD = yo, the expression is transformed to 

I ( N  + 1, N, L, b )  = L2N+1 lo' [xD(1 - X D ) I N  exp(2axD) dxD/N! 

where a = bL/2 ,  and the Jacobian of transformation is L. This may again be trans- 
formed, now using xD = (zD + 1)/2, and including the Jacobian of ;; we obtain 

( l - Z % ) N  eXp(aZD) dZD/N!. 
1 

I ( N  + 1, N, L, b )  = (L/2)2N+1 e c( 

This may be written (Abramowitz and Stegun 1964, 9.6.18, p 376) as 

N+1/2 I ( N +  1, N, L, b )  = 

where IN+1~2(a) is a modified Bessel function of order N +;. Inserting this expression 
into (2.3), we obtain 

(3.3) 

We may obtain an explicit expression for the configuration integral by invoking a 
formula from Abramowitz and Stegun (1964, 10.2.9, p 443), given as 

( . r r / 2~) ' /~1~+~/2 (2 )  = ( ~ z ) - ' [ R ( N + ~ ,  -2) e' - ( - I ) ~ R ( N + ~ ,  z )  e-'] 

where R ( N + $ , z )  is defined (Abramowitz and Stegun 1964, 10.2.11, p 443) as 
Xf=o ( N + &  k ) ( 2 ~ ) - ~ ,  and ( N + i ,  k )  is defined (Abramowitz and Stegun 1964,10.1.9, 
p 437) as ( N + k ) ! / k ! ( N - k ) ! .  So we obtain 

(3.4) 
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4. The momentum integrals and the partition function 

The integrals over centre-of-mass momenta 
CO N + 1  

i = l  
P’ = I . . . I n exp(-pP?/2M’) dPi 

-CO 

reduce to ( 2 ~ M ’ / p ) ( ~ + ’ ) / ’ .  The integrals over the momenta of the subparticles relative 
to the respective centres of mass reduce from 

CO N + l  

i = l  
P I ‘  = I . . . I n exp(-2pp:lM’) dp, 

-m 

to (TM’/~B)(~+’)’’ .  Therefore, the expression for the momentum integrals, P’ by P”, 
gives us the net expression 

P = (TM’/P)”’. (4.1) 

To obtain the partition function, we merely multiply Z as expressed by (3.3) by P as 
expressed by (4.1) and divide by the correction to classical phase space, h Z N c 2 ,  to obtain 
the major result of this paper: 

Similarly, an explicit expression may be obtained for the partition function by the use of 
(3.4). 

5. Limiting forms of the partition function 

In this section, we show that the partition function (4.2) reduces to that of a system of 
2 N  + 2 mass points as c approaches zero, and also exhibit the form of the partition 
function in the thermodynamic limit. 

5.1. Reduction of the soft rod system to a system of mass points 

Using the definitions a = bL/2 and b = pc,  we may rewrite (4.2) as 

It is found (Abramowitz and Stegun 1964, 9.6.7, p 375) that, as c approaches zero, 
IN+l/Z(pCL/2)-(pcL/4) /(N +;)!. The powers of c cancel and the exponential 
term approaches unity. Using the definition (Abramowitz and Stegun 1964, 6.1.2, p 
255; 6.1.8, p 255) of (N +$)! = (N +$)[1 x 3 x 5 x 7 x . . . x (2N - 1 ) ] ~ ” ~ / 2 ~ ,  it is easily 
found that 

N+1/2 

(5.1) 

which is the partition function for 2 N  + 2 mass points, of mass m = M’/2, on a circle. 
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5.2. The thermodynamic limit 

In  Olver (1974, p 390), we find that when Y is positive, and /ph z /  G 1 / 2 ~  - 6, where 8 is 
a small positive number, and /ph zI is the absolute value of the phase of z ,  that the 
modified Bessel function I ,  ( YZ) asymptotically approaches 

ey ‘ ( z ) [ l  + ~ ( v - ’ ) ]  
(5.2) 

(2.rrv)’/2(1 + z ~ ) ~ / ~  

as Y approaches infinity. In (5.2), O(Y-’) implies that the term in square brackets is 
bounded by 1 + K/v, where X is a constant (Olver 1974, p 4). Olver (1974, p 375) 
defines ((2) as (1 -t-z2)1/2+ln z [ l  + ( l + ~ ~ ) ~ / ~ ] - ~ .  

In  (4.2), we notice that if we define L = ( N  + l ) /p ,  where p is the number density, the 
order of the Bessel function is not quite proportional to the argument. But, if N is 
assumed to be large, we may approximate the order of the modified Bessel function of 
(4.2) as IN+1/2(bL/2) - IN+l[b(N+ 1)/2p] to conform with (5.2). With z = b/2p and 
Y = N + 1, (5.2) may be substituted into (4.2) to give an expression valid for large N + 1. 
Then, taking the thermodynamic limit, all terms invoiving O(V-’) vanish, and with the 
use of Stirling’s approximation on N !  (Abramowitz and Stegun 1964,6.1.38, p 257), we 
find from (4.2) 

). (5.3) 
In Q ~ M ’ e x p ( 1  -b/2p+[1 + ( b / 2 ~ ) ~ ] ] ’ ” )  

2/3h2p2{1 +[1+ (b/2p)2]1’2} 
iim ---=In( 

N + l + x  (N+1)  
( N + l ) / L = p  

‘The same result is obtained if we define ( N  -1 ; ) /L = p, so that the order and argument of 
the Bessel function may be directly proportional. 

If, in (§.3), the intersubparticle potential is allowed to vanish ( c  = b/P s, 0), (5.3) 
reduces to the thermodynamic limit for N + 1 mass point ‘pairs’ on a circle. The same 
expression results from (5.1) if p -1 ( N  + 1)/L is defined as the ‘pair point density’ in 
(5 , l )  and the thermodynamic limit is taken. By contrast, (5.1) leads to a different 
expression, correct for mass points if, in (5.1), p = (2N + 2)/L and the thermodynamic 
limit is taken in the conventional fashion. 

6. The thermodynamic functions F, p and S 

In this section, we exhibit expressions for the one-dimensional pressure, F, for the 
chemical potential, p, and for the entropy, S. We present formulae for these functions 
both for a system of finite extension, and also in the thermodynamic limit under the 
condition that b/2p remains finite. 

A great deal of literature exists on the interchangeability of the order of taking the 
thermodynamic limit, and the taking of various partial derivatives of the partition 
function; two works especially deserving of mention in this regard are Munster (1969) 
and Balescu (1975). For simplicity, we prefer to demonstrate by direct methods that the 
taking of the thermodynamic limit and the taking of the relevant derivatives is 
interchangeable for our system. To do this, we must examine the ratio 
IN-1~2(~)/IN+1~2(a), which occurs in the formulae for F, p and S of the soft rod system 
not in the thermodynamic limit. 

In examining this ratio, we notice that the order and the argument of each of the two 
Bessel functions are slightly different, if we use the definition of density used in (5.3). In 
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9 5.2 this proved to be no difficulty, because terms arising from the mismatch of order 
and argument of the Bessel function vanished in the limit. Such is not the case in the 
ratio of Bessel functions; more care is needed. 

Suppose that we define ( N + $ ) / L  = p .  Set x = b/2p; then z = (N+$)x(N-;)-'. 
Because z varies very slowly as N increases, we may use expression (5.2) to establish the 
limit of the ratio of Bessel functions as N goes to infinity. The full expression is 

where A=[21r(N+y)] 1 1/2 ( ~ + X ~ ) ' / ~ / [ ~ T ( N - - T ) ]  1 1/2 ( 1 + ~ ~ ) ' / ~ - 1  as N + w .  The first 

bracketed term asymptotically approaches e / x  as N approaches infinity. Using the 
binomial expansion (Jolley 1961) for P in terms of x and N, tedious algebra reduces the 
second bracketed term to (1 +x2N- ' ( l  + ~ ~ ) - ' / ~ [ 1  + ( " x ~ ) " ~ ] } - ~  if terms of order 
N-' and smaller are dropped. Similarly, the final term is found to be [ l  + (1 + x ~ ) ' / ~ +  
O(N-')].  With some algebraic manipulation, the result is 

using b/2p as x. 

6.1. The one-dimensional pressure 

By analogy with the formula for pressure (Tolman 1967), F1 = P-'(d In Q / d L ) , ,  
where T is the temperature and Q is given by (4.2), and the subscript on Fl simply 
denotes a finite system. From the general statement (2-l  d/dz)kz"I,(z) = z"-kIv-k(Z)  
found in Abramowitz and Stegun (1964, 9.6.28, p 376), we readily deduce that 
dl;(z)/dz = I v - l ( ~ ) - ( v / ~ ) I v ( ~ ) .  With z =a, v = N + $  and k = 1, we find that the 
one-dimensional pressure of a system not in the thermodynamic limit is 

(6.3) 

The one-dimensional pressure F2 exerted by a system in the thermodynamic limit 
may be obtained by multiplying (5.3) by -p- l  to obtain the free energy per particle, and 
then differentiating with respect to -p-' (the length per particle), giving 

Insertion of (6.2) into (6.3), and passage to the thermodynamic limit results in (6.4), 
as expected. 

6.2. The chemical potential 

In a finite system, the number of particles, N, is not a continuous variable. Only in the 
thermodynamic limit is it strictly permissible to obtain the chemical potential p as a 
derivative of In Q with respect to N .  To avoid this in obtaining p for a finite system, we 
may assume that the system is not extremely small (Hill 1963) and adopt a procedure 
employed by Andrews (1975), setting p1 = -@-' 1n(QNcl/QN), where the subscripts to 
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Q indicate the number of particles in each system. From (4.2),  we then have 

7iM1LI,+1/2(bL/2)  
p l  = -p-' In( 

bp  h 'NIN - 1 2 (bL/  2 1 
for a rehtively small system. 

limit, we may take 
If we wish to obtain the chemical potential p2 for a system in the thermodynamic 

Use of (5.3) for In Q / ( N  + 1 )  and multiplication by -p-' leads to 

TM1 
2ph2p2{1 + [ 1  +("2p)']'''} 

p2 = -p-' In( 

Again, we note that if (6.5) is taken into the limit as N + CO, one obtains (6.6) using (6.2).  

6.3. The entropy 

Finally, we consider the entropy of the soft rod system. The entropy of a finite system is 
defined (Tolman 1967) as SI = kB In Q + p-'(d In Q / c ~ T ) ~ , = ,  where ke is Boltzmann's 
constant. Using (4.2) in this definition, and recalling that b = pc and a = pcL/2 ,  

The entropy per particle, sl, is simply S 1 ( N  + l)- ' .  

which can be obtained by defining the specific entropy: 
In order to relate the entropy to (5.3), one must consider the entropy per particle, 

s2 = S 2 ( N  + 1)-' = k g  ln(Q)/(N + 1) + p-'{d[ln Q / ( N  + l)]/dT}N,L. 

This affords us 

The same expression may be obtained from (6.7) by dividing by N + 1 and invoking the 
expression given for the ratio of Bessel functions given in (6.2).  

7. Conclusions 

In this work, we derived the partition function for a system of soft rods in the absence of 
end effects. We showed that this partition function reduced to the correct partition 
function for a corresponding system of mass points as the intraparticle potential 
approached zero. We then obtained the thermodynamic limit of the soft rod partition 
function, which had a simple mathematical form. Finally, we derived the one-dimen- 
sional pressure, the chemical potential, and the entropy per particle for both finite and 
macroscopic systems, and showed that the expressions for the thermodynamic functions 
of the finite system converge to the corresponding functions of the macroscopic system 
in the thermodynamic limit. 
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The procedure we employed to integrate over the positional coordinates of the 
centre of mass is general for any intraparticle potential. We compared the soft rod 
configuration integral prior to integration over the coordinates relative to the centres of 
mass with the configuration integral of a corresponding hard rod system. A similar 
comparison may be made with the configuration integral of hard rod mixtures (David 
1964). If the potential in (2.2) is replaced by a potential of different form, one may 
obtain the correct expression for the configuration integral of the corresponding system. 

We leave consideration of end effects and other interesting properties of the soft rod 
system to a work in preparation (J C Poirier and J K Swadesh 1979 unpublished), and 
we remark here only that end effects may be included by modification of the properties 
of the N + 1 th particle. 
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